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Distributed Decision and Control for Cooperative UAVs
Using Ad Hoc Communication

Yosi Ben-Asher, Sharoni Feldman, Pini Gurfil, Member, IEEE, and Moran Feldman

Abstract—This study develops a novel distributed algorithm for
task assignment (TA), coordination, and communication of mul-
tiple unmanned aerial vehicles (UAVs) engaging multiple targets
and conceives an ad hoc routing algorithm for synchronization of
target lists utilizing a distributed computing topology. Assuming
limited communication bandwidth and range, coordination of
UAV motion is achieved by implementing a simple behavioral
flocking algorithm utilizing a tree topology for distributed flight
coordination. Distributed TA is implemented by a relaxation
process, wherein each node computes a temporary TA based on
the union of the TAs of its neighbors in the tree. The computation
of the temporary TAs at each node is based on weighted matching
in the UAV-target distances graph. A randomized sampling mech-
anism is used to propagate TAs among different parts of the tree.
Thus, changes in the location of the UAVs and targets do not pass
through the root of the tree. Simulation experiments show that the
combination of the flocking and the TA algorithms yields the best
performance.

Index Terms—Distributed algorithms, distributed control, mo-
bile communication.

I. INTRODUCTION

THE problem of design, development, and control of multi-
agent systems has been studied in recent years for many

applications. In particular, the use of systems consisting of mul-
tiple autonomous robots or unmanned aerial vehicles (UAVs)
has been proposed in order to meet the requirements of com-
plex missions [1]. Control, communication, and decision sup-
port systems for UAVs constitute rapidly evolving research and
development fields, as indicated by the Department of Defense
UAV Roadmap 2002-2027 [2]. The use of groups of cooperating
UAVs in order to perform various missions is currently studied
throughout the world and is considered a main research goal by
the United States Air Force Research Laboratory (AFRL) [3].

Assigning multiple UAVs to perform tasks cooperatively
is a challenge that requires the development of specialized
algorithms [4]–[7]. These algorithms may be classified into two
main types: optimal and heuristic. While optimal algorithms
yield better results in terms of task assignment (TA) [9], they are
usually more sensitive to system uncertainties, enemy behavior,
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and environment changes. Heuristic algorithms [10], on the
other hand, are usually suboptimal but more robust. An issue
strongly related to cooperative UAV motion is flocking (also
referred to as formation flying), which has been extensively
studied in the last two decades [11], following the seminal work
of Reynolds [8].

In this study, we are concerned with solving the following
cooperative decision and control problem. A given number of
UAVs and targets are dispersed on a given theater. Maximize the
ratio between the number of intercepted targets and the number
of launched munitions given a fixed number of flock payloads

We use the Metrical Routing Algorithm (MRA) [12] for ad
hoc communication. This algorithm maintains connectivity
by dynamically connecting the UAVs using a minimal set of
rooted spanning trees (RSTs). The proposed algorithms for
coordinating the UAVs uses the RST structure as a black-box
building block. Thus, the dynamic communication details are
masked out by the dynamics of the underlying set of RSTs. We
mainly focus on coordination and decision support rather than
on details related to the ad hoc communication.

The TA algorithm is implemented by a relaxation processes
over the RST nodes. Each node computes a flow of updated TA
plans by collecting TA plans from its neighbors in the tree and
merging them. This relaxation process achieves the following
two goals simultaneously.

• Distribution: Independent generation of TA plans at each
node, such that each plan is updated to include only local
changes.

• Robustness: Local changes are propagated to other nodes
through a common root only.

We use randomized sampling to overcome the relatively slower
rate at which global information is propagated. This sampling is
done by sending locally updated TAs to remote nodes selected
at random. This algorithm is an enhanced version of a basic
version that appeared in [13].

Thus, while most researchers assume a given system, propose
a new control algorithm, and examine the algorithm’s perfor-
mance compared to other known algorithms, we take a novel
approach and develop a distributed UAV decision and control
system comprising all three layers: flocking, communication,
and task assignment. We evaluate the system’s performance by
examining efficiency, measured by the ratio between the number
of killed targets and the number of munitions launched by the
group of UAVs at a given time. For our simulation experiments,
we assume that every UAV is equipped with two types of sen-
sors: a ground moving target indicator (GMTI) that detects ve-
hicle movement and an electrooptical (EO) sensor used to track
the target and guide the missiles. The detection radius of the
GMTI is assumed to be larger than the detection radius of the
EO sensor. We show that the proposed algorithms considerably
increase the flock efficiency.
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II. FLOCKING LAYER: HEURISTIC RELATIVE UAV CONTROL

Here, we discuss the heuristic control algorithm for UAV co-
ordination based on Reynolds’ behavioral flocking algorithm
[8], which may be summarized as follows. Let denote
some UAV constituting a node in the graph . calculates its
desired velocity as follows:

(1)

where is a constant scalar weight function, is the UAV
index, and is the algorithm law index, defined by the following
flocking rules.

: Cohesion commands the UAV to converge onto the
center of the flock, computed by each UAV from the data com-
municated to it by the other UAVs. We denote the desired cohe-
sion velocity for by and the position vector of by .
The cohesion velocity command may be written as

(2)

where denotes the Euclidian vector norm, is a refer-
ence distance, usually related to the maximum payload detection
range, representing the effective area of the UAV payload, and

(3)

where is the cohesion rule weight for relative to , given
by . In (3) and the subsequent equations,
denotes the number of nodes of some subtree and not
necessarily the total number of UAVs, to be denoted by .

Although may be time-dependent, it is more likely that
it would be directly dependent upon the relative position, in-
creasing as the relative distance between the UAVs decreases or
remaining constant.

: Alignment matches the UAV’s velocity vector to the
mean velocity vector of the group. Alignment therefore attempts
to steer the UAVs to fly parallel to each other. We denote the de-
sired alignment velocity for by , and let be the align-
ment weight for relative to , so that

(4)

Similarly to , may be constant, time-de-
pendent, or a function of the relative distance between and

.
: Collision avoidance; restricts the UAV from colliding

with its nearest neighbors. To that end, calculates its desired

collision avoidance velocity relative to the other UAVs ac-
cording to the formula

(5)

where is the collision avoidance rule weight of avoiding
collision with , and and are the position vectors of

and , respectively. The weight function is likely to
be dependent upon the relative distance between and ,
equaling 1 for the closest neighbor to UAV and 0 for all other
UAVs.

The desired velocity (1) is translated into an acceleration
command using the following kinematic equation:

(6)

where and are the current and desired velocity
of , respectively, and is the maximal load factor of .
The term in (6) yields a vector perpendicular to the
plane defined by the velocity vectors and . This perpen-
dicular vector is then vector multiplied again by to define the
direction, perpendicular to , in which the UAV will accelerate
in order to reach the desired velocity . The quotient defines
a unit vector in the desired maneuver direction, and then mul-
tiplied by the UAV maximal load factor to give the maneuver
magnitude. This acceleration is integrated into velocity and po-
sition using the kinematic model

(7)

Fig. 1 depicts a number of flocking scenario, implementing dif-
ferent weights on the cohesion, alignment, and collision avoid-
ance rules. This figure shows that the movement of the UAVs
in the field can be modified by a proper selection of flocking
weights.

The implementation of Reynolds’ algorithm in this work is
carried out using a new approach: The flocking algorithm con-
trols the velocity and heading of the UAVs. However, each UAV
communicates with its closest neighbors only and is unable to
get a global view of the heading and velocity of the entire flock.
The control information including the flocking data propagates
from node to node using the tree management protocol.

III. COMMUNICATION LAYER: METRICAL

ROUTING ALGORITHM

Here, we describe the metrical routing algorithm (MRA) [12]
that is used as an ad hoc communication protocol between the
UAVs for communicating target list and flocking information.

The MRA protocol presented herein is a hybrid ad hoc pro-
tocol in the sense that some traffic control is used to maintain
the mapping of the communicating nodes. The small overhead
of the MRA protocol used to maintain the mapping is a worthy
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Fig. 1. aaaa5-UAV flocking (starting points marked with an ‘o’). (a) No cohesion creates straight and parallel paths to avoid collisions. w = 0, w = 0:2,
w = 0:8. (b) A combination of cohesion and alignment with much favored collision avoidance creates curved paths. w = 0:01, w = 0:01, w = 0:98. (c)
No collision avoidance creates a possible collision point. w = 0:01, w = 0:99, w = 0. (d) Increasing the cohesion and alignment weights increases the turn
radii. w = 0:1, w = 0:2, w = 0:7.

investment, as the MRA is capable of handling successfully a
demanding traffic load under a high node density and fast node
movement. The MRA organizes the nodes in rooted trees in
order to find short session paths between nodes on the tree. The
algorithm attempts to minimize the number of trees by fusing
separate adjacent trees into a single tree. As long as any node in
one tree is not in the transmission range of any node in the other
trees, the trees will function autonomously. As soon as a radio
connection is created between two nodes, the trees will be fused
into a single tree.

The MRA algorithm organizes the nodes in the field in rooted
trees. Only nodes that belong to the same tree can create sessions
among themselves. To ensure maximal connectivity, all nodes
will try to organize themselves in a single tree. Every node in
the field has a unique node-ID (similar to a phone number or an
IP address) and virtual coordinates that may change depending
on the changes in the tree structure. Every tree is identified by a
“tree name” which is the ID of the root node. Nodes periodically
send beacons, termed hello messages. Every node that receives
a beacon checks whether the node that sent the beacon belongs
to a different tree. If the nodes belong to different trees, they
initiate a fusion process that fuses the separate trees into a single
tree.

Initially, every node forms a separate tree of size 1. Every
node in the tree can autonomously migrate to a neighboring tree

regardless of the node position in the tree. The migrating node
gets new coordinates in its new tree according to the node’s new
position. Naturally, when a node migrates from one tree to a new
tree, it may carry along its neighboring nodes (since it belongs
now to a bigger tree). In the macro view, the migration of the
single nodes creates a fusion of smaller trees into larger ones.

The fusion process of two trees is parallel, that is, at any
given time step, multiple nodes of the smaller tree join the larger
tree. The implementation of the flocking and TA algorithms is
based on the tree structure. Every tree runs these algorithms au-
tonomously, as it cannot necessarily communicate with other
trees. Existence of such communication will initiate a merge
process that will ultimately result in a single tree.

IV. TA LAYER: TARGET LIST MANAGEMENT

The TA layer relies on the arrangement of the UAVs in
trees and on the inter-communication capabilities using ad hoc
routing. Every UAV is autonomous, performing autonomous
decisions and behaving according to the changes in the theater.
However, when a UAV becomes a node in a tree created by the
MRA, it upgrades its behavior and acts as a member of a group.

When a UAV operates as an individual—that is, when
flocking and TA are disabled—each UAV randomly selects a
flying heading and continues to fly in this direction until one of
the following scenarios occurs.
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1) The sensors detect a potential object to intercept. In this
case, the UAV will select an optimal route in order to in-
tercept the target. The process of calculating the route is
performed under the UAV flight and maneuvering limi-
tations.

2) The UAV reaches the border of the theater. In this case,
the UAV selects one of the following options.

a) Return back to the theater using the same heading
angle .

b) Return with a random heading angle.
c) Return to the field using the heading angle of .

3) The UAV randomly changes its flying direction with a
probability of per simulation cycle.

In this section, we consider the problem of com-
puting a targeting plan for a set of moving agents

(UAVs in our case) attacking moving tar-
gets (vehicles in our scenario). We
focus on a distributed solution over a special setting where the
communication among is carried out by an ad
hoc network, as described in the previous section. Using ad
hoc communication yields a complex and challenging setting
wherein the following factors should be considered.

• Ad hoc communication implies that communication links
among are constantly changing. Thus,
there is no guarantee that a given subset of that was
previously connected will remain connected.

• At any stage, new information regarding: 1) new targets;
2) changes in the location of known targets; and 3) new

’s that are closer to a given target can pop up.
• It is desired not to fix a targeting plan (i.e., assign targets

to each ) in advance, but rather adopt the reactive setting
wherein at any time step only a portion of the targets are
assigned to some subset .

• Centralized algorithms where all of the data (location of
and ) are collected and

then processed may fail to obtain good solutions due to
disrupted communication and long communication delays.

We hereby suggest an enhancement of the TA algorithm de-
scribed in [13]. In this algorithm, target assignments are com-
municated among the UAVs using the MRA protocol described
above. Unlike other ad hoc routing algorithms, the MRA at-
tempts to connect (or a subtree thereof)
by a minimal set of rooted trees that preserves geographical dis-
tances, namely, distances on the rooted trees are usually propor-
tional to the distances of in the given engage-
ment theater.

More formally, let be the graph at time , wherein each
two nodes , that can communicate have an edge in .
The MRA algorithm attempts to cover by a minimal set of
spanning trees. These rooted trees can be naturally used for both
distributed computing (of, e.g., the flocking layer) as well as for
communication, in addition to propagation and computation of
the TA layer. The proposed TA algorithm for using the
MRA protocol can be thus summarized as follows.

1) Each node in a tree (or a subtree) locates all of the de-
tectable targets, identifies them, and computes its distance
to each target. The target ID is the target location. Note that
computing a unique target ID is not always straightforward,
since it may require fusion of the target location taken by
several UAVs in adjacent time steps and locations.

Fig. 2. TL flow.

2) At each time step , a node constructs a weighted bi-
partite graph representing the distances between
each and related to the subtree rooted at . There
are three events that lead to the creation of a new bipartite
graph , described as follows:
• a new is received from one of ’s children;
• a new is received from ’s father or by a

remote node through the random sampling mechanism;
• there is a change in the target list of , i.e., detects a

new target or an old target disappears or destroyed.
In each of these events, a new is computed
by merging or or into

.
3) The node computes a minimum weighted matching

of obtaining an attack plan that
minimizes the sum of distances of the UAVs in the subtree
of to their targets

(8)

4) is sent to the father of and
is sent to all of the children of .

5) When a node receives an attack plan from
its father, it checks to see if it is assigned a new target; if
so, it “leaves” its current target and starts to engage the
recommended target.
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Fig. 3. Theater view during engagement.

6) The attack plan is sent to all of the children
of the current node.

Note that, in case a target is destroyed or disappears, it will
be removed from each , since these are propagated only
up the MRA trees.

The implementation of the target selection algorithm uses a
single data structure to transfer the bipartite graph and the
attack graph . This data structure is the Target List
(TL). A simplified TL model is depicted by Fig. 2. This model
ignores the parallelism in the TL flow between the UAVs. It ex-
plains the decision-making process and the decision overruling
performed by higher levels of UAVs in the tree with broader
views.

Fig. 2(a) presents the initial phase where and have de-
tected target , and have detected , and detected

. Every UAV that has one or more targets will autonomously
select a target from the possible targets in its TL and will com-
mence a pursuit. The current state depicted in Fig. 2(a) is that

and are in pursuit after , and prosecute , and
will pursue . The pursuit process of the UAVs is indepen-

dent of other UAV activities. Note that this is the initial phase,
where the targets were detected by the GMTI detector but are
not yet within the range of the UAV missiles launch distance
(i.e., within the FOV of the EO payload). Every UAV stores a
TL comprising all targets known to the UAV and indications on
the target state. Every UAV then sends its TL to its father and
children. , , and , constituting leaves in the tree, send
their TLs toward node 1, which is the subtree father. The deci-
sion taken by arrives to , which is also the UAV attacking

. continues its attack while receives the same TL from
its father and finds out that it should abort its attack on .
will look for an alternative target without an owner in the TL
that is within its GMTI range or will search for a new target that
might emerge.

Fig. 2(b) presents a situation in which had analyzed the
TLs and decided that subtree will be responsible to attack

, subtree will not attack , and subtree will attack .
The decisions of are sent to its father node 0 and its children.
A similar process takes place in the other parts of the tree.

In Fig. 2(c), the root distributes the results of its decisions to
its children. The decisions are embedded in its TL. The decision
of is that subtree will assume the responsibility to attack

, while subtree will abandon its attack. These decisions
will be distributed by every subtree towards its children until
they reach the leaves. In the meantime, and continue their
pursuit after .

Fig. 2(d) presents a situation where the root decisions arrived
to the attacking UAVs, and stopped its attack on while
continues its attack. The upstream and downstream flow of TLs
is not affected by changes in the tree structure or by appearance
of new targets.

V. SIMULATION AND VISUALIZATION

Fig. 3 presents a snapshot of the theater as created by the
simulator. The UAVs are identified by their position in the tree,
where R is the root, R.1 is one of the children of the root, and
R.1.1 is a child of R.1. Fig. 3(a) presents the detection footprint
of R.1.1 while Fig. 3(b) presents the detection footprint of R.1.

R.1.1 in Fig. 3(a) detected two potential targets. One of the
targets, marked by a cross, was selected as the target to be at-
tacked, and this is the first priority target for this UAV. R.1 in
Fig. 3(b) also detected two targets, where one of the targets is
observed by both UAVs. The target marked with a cross was
selected as the target to be attacked. Note that this UAV is at-
tacking the farthest target and not the closest one. This decision
was taken after analyzing the velocities and headings of the en-
tities participating in this pursuit or by a decision of the upper
layer in the tree (node R).

VI. EXPERIMENTAL RESULTS

The simulation experiments are aimed at evaluating the con-
tribution of the flocking and TA algorithms to the performance
of the UAVs using MRA-based ad hoc communication. The
main experiments comprise the following benchmarks:
Case 1) reference Monte Carlo simulations performed

without employing the flocking and TA algorithms;
Case 2) Monte Carlo simulations used to evaluate the contri-

bution of the flocking algorithm;
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TABLE I
SIMULATION PARAMETERS

Fig. 4. Monte Carlo simulation results for a t = 100 s.

Fig. 5. Standard deviation intervals for the case of 14 UAVs.

Case 3) combined Monte Carlo tests where both flocking and
TA algorithms are employed simultaneously.

Each simulation run in cases 1)–3) has been performed as-
suming that the missile hit probability is unity. All simulations
were performed using a time interval of 100 s. Additional
simulation parameters are listed in Table I.

The main performance evaluation measure is the average
number of hits per UAV, calculated as the ensemble average
over 50 Monte Carlo runs.

Fig. 4 depicts the results of the Monte Carlo simulations. In
this figure, the -axis is the UAV group size and the -axis is
the average number of hits per UAV. Each point on this graph
represents an ensemble average of 50 Monte Carlo runs. There
are three curves shown in this figure, corresponding to cases
1)–3).

There are two important observations. First, it is seen that the
flocking algorithm improves the average number of hits by up
to 12%. Combining the TA and flocking algorithms improves
the average number of hits per UAV by up to 14%. Second,
increasing the number of UAVs reduces the average number of
hits per UAV, as expected. Roughly, the relation is linear. This
implies that, when more UAVs are used, each platform can carry
less munitions for intercepting the same amount if targets.

Fig. 5 shows the standard deviations of the average number of
hits for the case of 14 UAVs. It is seen that the standard deviation
remains practically invariant to the UAV cooperation method.

VII. CONCLUSION

We developed a distributed algorithm for task assignment,
coordination, and communication of multiple UAVs engaging
multiple targets in an arbitrary theater. The algorithm used a
relaxation method for computing both locally and globally up-
dated task assignment plans. The relaxation is made over a tree
structure generated by the underlying ad hoc communication
layer. Random sampling is used to enhance the propagation of
changes between remote nodes in the theater.

Our simulation experiments raise a number of important con-
clusions. First, we conclude that the combination of flocking
and TA gives the best performance, which is improved relative
to the case with no flocking and no TA. An improvement of
the average number of hits was observed for UAVs that were
capable of both target list exchange and velocity coordination.
Second, increasing the number of UAVs enables the reduction
of the amount of munitions per platform.
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