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This paper establishes a methodology for obtaining the general solution to the spacecraft relative motion problem
by utilizing the Cartesian configuration space in conjunction with classical orbital elements. The geometry of the
relative motion configuration space is analyzed, and the relative motion invariant manifold is determined. Most
importantly, the geometric structure of the relative motion problem is used to derive useful metrics for quantification
of the minimum, maximum, and mean distance between spacecraft for commensurable and noncommensurable
mean motions. A number of analytic solutions as well as useful examples are provided, illustrating the calculated
bounds. A few particular cases that yield simple solutions are given.

Nomenclature
a = semimajor axis
E = eccentric anomaly
E = follower orbit
e = eccentricity
F = follower perifocal frame
f = true anomaly
I = inertial frame
i = inclination
Jk = Bessel function
L = leader-fixed frame
M = mean anomaly
n = mean motion
n0 = fundamental frequency
R = leader position vector
R = relative motion invariant manifold
r = follower position vector
W = distance function
α = normalized semimajor axis
μ = gravitational constant
ρ = relative position vector
� = right ascension of the ascending node
ω = argument of periapsis
ω = angular velocity vector
| · | = vector norm
‖ · ‖ = signal norm

Superscripts

′ = leader
∗ = relative orbital element

I. Introduction

M ODELING relative spacecraft motion is of prime importance
for formation-flying satellites and distributed spacecraft sys-

tems, which constitute a significant share of planned future space
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missions. Hence, in recent years, there has been a marked renais-
sance of research in this field.

The most common model of spacecraft relative motion is the
Clohessy–Wiltshire (CW) linear model.1 The CW linear formula-
tion assumes small deviations from a circular reference orbit and
uses the initial conditions as the constants of motion. In addition, the
CW model is inherently limited to short-term motion, as it was orig-
inally developed for rendezvous applications. Recognizing some of
the limitations of this approach, various researchers have gener-
alized the CW equations for eccentric reference orbits.2−4 Many
other researchers have modeled relative motion while taking into
account orbital perturbations such as oblateness5−7 and drag8 and
using high-fidelity models including third-body effects.9

An important modification of the CW linear solution is the use of
orbital elements as constants of the motion instead of the Cartesian
initial conditions. This concept, originally suggested by Hill,10 has
been widely used in the analysis of relative spacecraft dynamics.11,12

This approach facilitates the examination of the orbital perturba-
tions effect on the relative motion via variational equations such as
Lagrange’s planetary equations or Gauss’s variational equations.
Moreover, utilizing orbital elements facilitates the derivation of
high-order, nonlinear extensions to the CW solution.

There have been few reported efforts to obtain high-order so-
lutions to the relative motion problem.7,13−15 Karlgaard and Lutze
proposed formulating the relative motion in spherical coordinates
in order to derive second-order expressions.13 The use of canonical
orbital elements known as epicyclic elements for modeling relative
motion equations has also been proposed.14,15

However, there are still a few open questions in the field of rela-
tive motion modeling. For instance, there have been little reported
efforts to understand the relative spacecraft motion geometry and
topology in the general case of two spacecraft flying on arbitrary
elliptic orbits. More importantly, analytic, closed-form expressions
for metrics quantifying the relative motion space are absent. These
important metrics are the minimum, maximum, and mean distance
between spacecraft that follow Keplerian elliptic orbits. Calculation
of these metrics is enabling for all future formation-flying missions.
Knowledge of the minimum distance is essential for collision avoid-
ance, maximum distance is crucial for sensor and control design, and
the mean distance is important for power management and line-of-
sight calculations.

This paper, therefore, has two main contributions. First, we shall
establish a methodology for obtaining the general solution of the
spacecraft relative motion problem by utilizing the Cartesian con-
figuration space in conjunction with classical orbital elements. In
other words, we are utilizing the known inertial expressions describ-
ing vehicles flying on elliptic orbits in order to obtain a closed-form
solution in a rotating frame, without resorting to approximations or

1004



GURFIL AND KHOLSHEVNIKOV 1005

series expansions. We then study the geometry of the relative motion
configuration space and find the relative motion invariant manifold.
This manifold represents a well-defined region of the configuration
space on which the relative motion can evolve. Assuming Keple-
rian relative motion, all relative motions, be they commensurable
(periodic) or noncommensurable (quasi-periodic), will evolve on
this invariant manifold. This finding is significant for understanding
the nature of relative motion and for studying the relative distance
between the spacecraft.

Next, we use the geometric structure of the relative motion prob-
lem in order to define and derive useful metrics for quantification
of minimum, maximum, and mean distance between spacecraft for
both commensurable and noncommensurable mean motions. As the
motion is confined to lie on the invariant manifold, relative distances
can be easily defined and studied. We provide a number of analytic
solutions as well as useful examples for the metrics of interest, illus-
trating the newly found expressions for the relative motion metrics.
We also give a few particular cases that yield simple solutions which
should be of interest to the designers of distributed space systems.

II. Relative Motion Modeling
In the following discussion, we shall study the relative motion

between two arbitrary elliptic Keplerian orbits. The reference orbit
will represent the orbit of a leader spacecraft, whereas the additional
orbit will represent an orbit of a follower spacecraft. To that end, we
shall utilize standard coordinate systems as briefly discussed herein.

To begin, consider a Keplerian motion about a primary gravi-
tational body with a center of mass at O . The follower’s perifo-
cal frame F is a Cartesian, dextral coordinate system centered at
O defined by the unit vectors f1, f2, constituting the fundamental
orbital plane, and f3 = f1 × f2. Equivalently, the leader perifocal
frame is F ′. For modeling relative motion, it is sometimes bene-
ficial to project the follower’s position onto a rotating, local-level
local-horizon Euler–Hill frame L, centered at the leader spacecraft.
The fundamental plane is the leader orbital plane, defined by the
unit vectors l1, l2, and l3 = l1 × l2. The inertial frame of reference
I is a Cartesian, dextral frame defined by the unit vectors s1, s2,
constituting the fundamental plane, coinciding with the primary’s
equatorial plane, and s3 = s1 × s2.

The inertial equations of the leader’s motion are given by the
standard Newtonian relationship

R̈ = −(μ/R3)R (1)

where

R = ‖R‖ = a′(1 − e′2)
(1 + e′ cos f ′)

(2)

and a′, e′, f ′ are the leader’s orbit semimajor axis, eccentricity, and
true anomaly, respectively. In a similar fashion, the follower inertial
equations of motion are

r̈ = −(μ/r 3)r (3)

where

r = ‖r‖ = a(1 − e2)

(1 + e cos f )
(4)

and a, e, f are the follower’s orbit semimajor axis, eccentricity, and
true anomaly, respectively. Let

[ρ]I = r − R (5)

denote the position of the follower relative to the leader calculated
in the inertial frame. Subtracting Eq. (1) from Eq. (3) yields

[ρ̈]I = −μ/‖R + ρ‖3 + (μ/R3)R (6)

To express the relative acceleration in frame L, we recall that

[ρ̈]I = d2ρ

dt2
+ 2 IωL × dρ

dt
+ d IωL

dt
×ρ+ IωL × (IωL ×ρ) (7)

where ρ is the relative position in frame L, IωL denotes the angular
velocity vector of frame L relative to frame I, and the operator d(·)
denoted differentiation with respect to L.

As IωL is normal to the orbital plane, we can write

IωL = [0, 0, ḟ ′]T (8)

where in the case of Keplerian motion,

ḟ ′ =
√

μ/a′3(1 − e′2)3(1 + e′ cos f ′)2

= [
n′/(1 − e′)

3
2

]
(1 + e′ cos f ′)2 (9)

and n′ is the mean motion of the leader. The position vector of the
leader spacecraft in L can be written as

[R]L = [R, 0, 0]T (10)

Taking

ρ = [x, y, z]T (11)

and substituting Eqs. (6), (8), and (11) into Eq. (7), yields the follow-
ing component-wise well-known differential equations for space-
craft relative motion:

ẍ − 2 ḟ ′ ẏ − f̈ ′ y − ḟ ′2x = − μ(R + x)

[(R + x)2 + y2 + z2]
3
2

+ μ

R2
(12)

ÿ + 2 ḟ ′ ẋ + f̈ ′x − ḟ ′2 y = − μy

[(R + x)2 + y2 + z2]
3
2

(13)

z̈ = − μz

[(R + x)2 + y2 + z2]
3
2

(14)

Equations (12–14) constitute a six-dimensional system of nonlin-
ear differential equations, incorporating the known Keplerian so-
lutions for R and ḟ ′ [cf. Eqs. (2) and (9), respectively] and the
relationship

f̈ ′ = −2Ṙ ḟ ′/R

These equations admit a single equilibrium at x = y = z = 0,
meaning that the follower spacecraft will appear stationary in the
leader frame if and only if their positions coincide on a given elliptic
orbit. This single relative equilibrium bifurcates into an equilibria
continuum if the leader is assumed to follow a circular reference or-
bit. (If the dynamics are transformed into a rotating-pulsating Euler–
Hill frame such that time dependence is mapped into true anomaly
dependence, the equilibria of the circular problem are recovered in
the elliptic problem.)

The configuration space for the relative spacecraft dynamics of
Eqs. (12–14) is R3. Let TS(R3) = R3 × R3 be the tangent space of
R3. We shall use (ρ, ρ̇) as coordinates for TS(R3), that is to say,
(ρ, ρ̇) ∈ TS(R3).

The nonlinear relative equations of motion can be straightfor-
wardly solved (in terms of true anomaly) because the generating
orbits are Keplerian. To see this, we shall find an expression for ρ
using consecutive Eulerian rotations and a translation.

The initial step is to transform fromF toI using three consecutive
clockwise rotations conforming to the common 3−1−3 sequence.
To that end, we define the line of nodes (LON) obtained from the
intersection of the follower’s orbital plane and the inertial reference
plane.

The composite rotation, T ∈ SO(3), transforming any vector in
F into the inertial frame I is given by16,17

T (ω, i, �) =

⎡⎣c�cω − s�sωci −c�sω − s�cωci s�si

s�cω + c�sωci −s�sω + c�cωci −c�si

sωsi cωsi ci

⎤⎦ (15)

where i, �, ω are the follower’s inclination, right ascension of the
ascending node (RAAN), and argument of periapsis, respectively,
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and we have used the compact notation sx = sin(x), cx = cos(x).
The next step is to transform from I to the leader’s perifocal frame
F ′, using the rotation matrix T T (ω′, i ′, �′), where i ′, �′, ω′ are the
leader’s inclination, RAAN, and argument of periapsis, respectively.
The transformation of the follower’s position vector from F ′ into L
requires an additional rotation,

T1( f ′) =
[

c f ′ s f ′

−s f ′ c f ′

]
(16)

and a translation by [R]L, resulting in

ρ = T1( f ′)T T (ω′, i ′, �′)T (ω, i, �)[r]F − [R]L (17)

where [r]F is the follower’s position vector in frame F , expressed
in terms of the follower’s eccentric anomaly E as

[r]F =

⎡⎣a(cos E − e)

b sin E

0

⎤⎦ (18)

and b = a
√

(1 − e2).
Equation (17), written component-wise, is the most general solu-

tion (which still entails solution of Kepler’s equation, as explained
in the sequel) to the relative motion problem, modeled by the dif-
ferential equations (12–14). This solution can be simplified if we
utilize relative orbital elements. These orbital elements describe the
orientation of the follower’s orbital plane relative to the leader’s or-
bital plane, where the relative LON is defined by the intersection of
these two planes. Using this LON and some fixed reference line, we
can define the relative RAAN �∗, the relative argument of periapsis
ω∗, and the relative inclination i∗. In terms of the relative elements,
the expression for the relative position is simplified into

ρ = T1( f ′)T (ω∗, i∗, �∗)[r]F − [R]L (19)

Substituting Eqs. (10), (15), (16), and (18) into Eq. (19) yields

x = 1
2
[(k3 − k2)s f ′ − E + (k1 + k4)c f ′ − E + (k3 + k2)s f ′ + E

+ (k1 − k4)c f ′ + E ] − e(k3s f ′ + k1c f ′) − R (20)

y = 1
2
[−(k1 + k4)s f ′ − E + (k3 − k2)c f ′ − E + (k4 − k1)s f ′ + E

+ (k2 + k3)c f ′ + E ] + e(k1s f ′ − k3c f ′) (21)

z = k5(cE − e) + k6sE (22)

where

k1 = (c�∗ cω∗ − s�∗ sω∗ ci∗)a (23)

k2 = (−c�∗ sω∗ − s�∗ cω∗ ci∗)b (24)

k3 = (s�∗ cω∗ + c�∗ sω∗ ci∗)a (25)

k4 = (−s�∗ sω∗ + c�∗ cω∗ ci∗)b (26)

k5 = sω∗ si∗a (27)

k6 = cω∗ si∗ b (28)

We can simplify Eqs. (20–22) by adopting the magnitude-phase
representation

x = K1 sin( f ′ − E + �1) + K2 sin( f ′ + E + �2)

− K3 sin( f ′ + �3) − R (29)

y = K1 sin( f ′ − E − �1) + K2 sin( f ′ + E − �2)

+ K3 sin( f ′ − �3) (30)

z = K4 sin(E + �4) − k5e (31)

where

K1 = 1
2

√
(k3 − k2)2 + (k1 + k4)2 (32)

K2 = 1
2

√
(k3 + k2)2 + (k1 − k4)2 (33)

K3 = e
√

k2
1 + k2

3 (34)

K4 =
√

k2
5 + k2

6 (35)

�1 = tan−1[(k3 − k2)/(k1 + k4)] (36)

�2 = tan−1[(k3 + k2)/(k1 − k4)] (37)

�3 = tan−1(k1/k3) (38)

�4 = tan−1(k6/k5) (39)

Thus, we have obtained the general solution for the nonlinear dif-
ferential equations (12–14) modeling the relative motion problem.
This general solution lies in the three-dimensional configuration
space, comprising the relative motion invariant manifold R. In this
context, R constitutes a manifold in a loose sense, that is, any so-
lution of f (x, y, z) = 0 yielding a two-dimensional manifold in R3

(i.e., R is not a topological space). This manifold is invariant be-
cause any solution of the relative motion problem starting on R will
remain on R for all times.

The dynamics on R evolves according to Eq. (9) and a similar
relationship that holds for the follower’s eccentric anomaly, ema-
nating from Kepler’s equation,

Ė = n/(1 − e cos E) (40)

where n is the mean motion of the follower. Thus, the general solu-
tion is a function of the leader orbital elements œ′ and the follower
orbital elements œ. The orbital elements themselves constitute a
manifold in the parameter space, that is,

œ = [a, e, i, �, ω, M0]T ∈ � ⊂ R2 × S4 (41)

where � is an open subset of R2 and S4 is the four-sphere.
All possible solutions of the relative motion problem will evolve

onR, hence its invariance property. If the mean motions of the leader
and follower commensurate (e.g., in a 1:1 resonance, i.e., n = n′),
then the relative orbit will be a closed smooth curve γc(t) ∈R sat-
isfying the periodicity condition γc(t) = γc(t + T ). Otherwise, an
open curve γo(t) ∈Rwill be obtained, and the motion will be quasi-
periodic. Because the dynamics are always confined to evolve on
R, the relative motion will be always bounded. (This observation
is trivial because the relative motion analyzed here is Keplerian.
Nevertheless, many of current works dealing with relative motion
tend to distinguish between “bounded” and “unbounded” relative
motion, while implicitly referring to 1:1 commensurable and non-
commensurable motions, respectively.) We shall use this property
in the next section to calculate distances.

Considering the relative motion invariant manifold, a few issues
of practical interest to formation flying and distributed spacecraft
systems should be analyzed, such as convertingR into a Riemannian
manifold by defining some metric and the geodesics on R. We shall
be primarily interested in investigating metrics defined on R for
purposes of evaluating the minimum, maximum, and mean distance
between spacecraft.

Interestingly, in some instances, the manifold R can be approx-
imated by parametric representations of familiar geometric shapes.
For example, when �∗ and ω∗ are first-order small, the relative po-
sition components x, y, z constitute the parametric equations of an
elliptic torus (a surface of revolution that is a generalization of the
ring torus, which is produced by rotating an ellipse in the xz plane
about the z axis), meaning that it can be also written in the form

x ≈ (c1 + c2 cos v) cos u (42)

y ≈ (c1 + c2 cos v) sin u (43)

z ≈ c3 sin v (44)

where u, v ∈ [0, 2π ].
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Fig. 1 Quasi-periodic motion of a follower spacecraft in a leader-fixed rotating reference frame. The right pane shows the unit epicycle. The left
pane presents a magnified view of an epicycle segment.

Fig. 2 Commensurable (——) and epicyclic (· · · ·) relative motion on
an elliptic torus.

Example 1: Consider an equatorial leader orbit with a′ = 6578 km
and a follower orbit with a = 6710 km, e = 0.1, i = 15 deg,
� = 5 deg, and ω = M0 = 0.

To delineate the relative motion geometry, we need to integrate
Eqs. (9) and (40). We then substitute the parameter values and the
time histories of ν and E into Eqs. (29–31) and plot the results.
Figure 1 shows the xy projection of the relative motion using the
normalization a′ = n′ = μ = 1. As a′ 
= a, the energy/period match-
ing condition is violated, and so we do not expect a 1:1 periodic
motion. Instead, we see that the motion is quasi-periodic. The fol-
lower spacecraft performs an epicyclic motion along the unit circle
in the leader-fixed rotating frame. Thus, although the relative motion
is not 1:1 commensurable, it is certainly bounded, as relative mo-
tion between elliptic Keplerian orbits will always remain bounded
regardless of any particular selection of coordinates or resonance
conditions.

Figure 2 shows the three-dimensional motion and the torus that it
lies upon (dotted line). The motion clearly evolves along the elliptic

torus. If we change the semimajor axis of the follower spacecraft
to match that of the leader, the drift will stop, and a closed relative
orbit will result (solid line). The closed orbit lies, again, on the
three-dimensional elliptic torus.

III. Distances in the Unperturbed Relative
Motion Problem

As just mentioned, the relative motion in the elliptic case is always
bounded. Let us find the quantitative characteristics of distances
between two spacecraft moving along the relative motion invariant
manifold R.

Denote by Q(E) a point lying on the Keplerian ellipse represent-
ing the leader’s orbit E , having the eccentric anomaly E . Let P and Q
be the unit vectors directed toward Q(0) and Q(π/2) respectively,
and S = √

(1 − e2)Q. Note that P is the first and Q is the second
vector columns of the matrix T (ω, i, �) [Eq. (15)]. Equivalently,
we let E ′ be the Keplerian elliptic orbit of the follower.

Let ρ = |ρ| denote the Euclidean vector norm of the relative posi-
tion vector. Reference 18 used the fact that both orbits are Keplerain
in order to find the relative position vector. After some simplifica-
tion, it was shown18 that the distance ρ(E, E ′) between points Q
and Q ′ can be determined by the formula

W (E, E ′)
�= ρ2/2aa′ = W0 + W1 cos E + W2 sin E + W3 cos E ′

+ W4 sin E ′ + 2(W5 cos E cos E ′ + W6 cos E sin E ′

+ W7 sin E cos E ′ + W8 sin E sin E ′)

+ W9 cos 2E + W10 cos 2E ′ (45)

Here,

4W0 = 2(α + α′) + αe2 + α′e′2 − 4P P ′ee′, W1 = P P ′e′ − αe

W2 = P ′Se′, W3 = P P ′e − α′e′, W4 = P S′e

2W5 = −P P ′, 2W6 = −P S′

2W7 = −P ′S, 2W8 = −SS′

4W9 = αe2, 4W10 = α′e′2

P P ′, P S′, P ′S, and SS′ are scalar products of the corresponding
vectors, and

α = a/a′, α′ = a′/a
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For the analysis of relative spacecraft motion, it is important to
calculate the maximal distance ρmax for determining the maximum
required power of intersatellite communication, choosing the most
appropriate sensor for a given maximal range and deriving a suitable
relative motion controller. For the purpose of collision avoidance,
the minimal distance between satellites ρmin is needed. In addition,
it is required to get an estimate of the mean-squared distance

‖ρ‖ = lim
T → ∞

√
1

T

∫ ∞

0

ρ2[E(t), E ′(t)] dt (46)

so as to determine the average power of the satellite communication
system.

A. Mean-Squared Distance
Consider firstly the nonresonant case. Then the motion is quasi-

periodic in the sense of Levitan19 and Bohr20 with two basic fre-
quencies n, n′, which are incommensurable real numbers. As just
shown, the relative motion will take place on the relative motion
invariant manifold. Hence, averaging with respect to time and with
respect to a corresponding two-dimensional torus coincide,19,20 and
Eq. (46) becomes

‖ρ‖2 = 1

4π 2

∫ 2π

0

∫ 2π

0

ρ2[E(M), E ′(M ′)] dM dM ′

where M is the mean anomaly. Transforming to eccentric anomalies
yields

‖ρ‖2 = 1

4π2

∫ 2π

0

∫ 2π

0

ρ2(E, E ′)

× (1 − e cos E)(1 − e′ cos E ′) dE dE ′

Using Eq. (45), we finally obtain

‖ρ‖2 = aa′(2W0 − eW1 − e′W3 + ee′W5) (47)

Remark 1: If e, e′ are small quantities of the same order of mag-
nitude, then Eq. (47) implies

‖ρ‖2 = a2 + a′2 + O(e2) (48)

Neglecting O(e2), the mean distance is equal to
√

(a2 + a′2) inde-
pendent of the mutual inclination.

Consider now a resonant case

n = mn0, n′ = m ′n0 (49)

with relatively prime natural m, m ′. Then

M = mτ, M ′ = m ′τ + M ′
0 − (m ′/m)M0 (50)

with

τ = n0t + M0/m (51)

The function ρ is 2π periodic with respect to τ , so that Eq. (46)
becomes

‖ρ‖2 = 1

2π

∫ 2π

0

ρ2[E(τ ), E ′(τ )] dτ (52)

By taking into account Eq. (45), we can calculate the integral term
by term using the absolutely and uniformly convergent series (in the
domain 0 ≤ e ≤ 1, −∞ ≤ M ≤ ∞) (Ref. 21)

cos E =
∞∑

k = 0

ck(e) cos k M, sin E =
∞∑

k = 1

sk(e) sin k M (53)

where

c0 = −e/2, ck = (2/k)J ′
k(ke)

sk = (2/ke)Jk(ke), k ≥ 1

Jk being Bessel functions; the mean value of cos 2E with respect to
M vanishes. Consider the product

2 cos E cos E ′ =
∞∑

k,k′ = 0

ck(e)ck′(e′)(cos ϕk,k′ + cos ϕk,−k′)

with

ϕk,k′ = (km + k ′m ′)τ + k ′[M ′
0 − (m ′/m)M0]

The mean value of cos ϕk,k′ with respect to τ vanishes except for
the case k = k ′ = 0. The mean value of cos ϕk,−k′ vanishes except
for km − k ′m ′ = 0, which is possible if and only if k = m ′k ′′ and
k ′ = mk ′′, where k ′′ is a nonnegative integer. Similar statements are
valid for terms of the form cos E sin E ′. Finally, we get

‖ρ‖2/aa′ = 2W0 − eW1 − e′W3 + W5(ee′ + 2B1)

+ 2(W6 B2 + W7 B3 + W8 B4) (54)

where

B1 =
∞∑

k = 1

cm′k(e)cmk(e
′) cos k(mM ′

0 − m ′ M0)

B2 = −
∞∑

k = 1

cm′k(e)smk(e
′) sin k(mM ′

0 − m ′ M0)

B3 =
∞∑

k = 1

sm′k(e)cmk(e
′) sin k(mM ′

0 − m ′ M0)

B4 =
∞∑

k = 1

sm′k(e)smk(e
′) cos k(mM ′

0 − m ′ M0)

Remark 2: If e, e′ are small quantities of the same order of mag-
nitude, then

ck, sk = O
(
e|k − 1|) �⇒ Bi = O(em + m′ − 2)

Hence, if m = m ′ = 1 the value (54) differs essentially from
the nonresonant one (47) even if e = e′ = 0. If m = 1, m ′ = 2 or
m = 2, m ′ = 1, then they differ by the quantity of the order of e.
For m + m ′ ≥ 4 the formula (48) holds true.

B. Maximal and Minimal Distances
In the nonresonant case

inf
t

ρ[E(t), E ′(t)] = min
E,E ′

ρ(E, E ′)

sup
t

ρ[E(t), E ′(t)] = max
E,E ′

ρ(E, E ′) (55)

so the problem is reduced into solving the equations

∂W (E, E ′)
∂ E

= 0,
∂W (E, E ′)

∂ E ′ = 0

or, equivalently,

A sin E ′ + B cos E ′ = C

F sin E ′ + N cos E ′ = K sin E ′ cos E ′ (56)
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Here,

A = P S′ sin E − SS′ cos E, B = P P ′ sin E − P ′S cos E

C = e′ B − αe sin E(1 − e cos E)

F = P P ′ cos E + P ′S sin E + α′e′ − P P ′e

N = P S′e − SS′ sin E − P S′ cos E, K = α′e′2 (57)

are trigonometric polynomials in E of degree 0, 1, or 2.
The optimal algorithm to solve Eq. (56) can be found in Ref. 22.

In this case, it is sufficient to solve the single-variable equation

g(E) = 0 (58)

where g is a trigonometric polynomial of degree 8,

g(E) = K 2(A2 − C2)(B2 − C2)

+ 2K C[N A(A2 − C2) + F B(B2 − C2)] − (A2 + B2)

× [N 2(A2 − C2) + F2(B2 − C2) − 2 N F AB] (59)

After solving Eq. (58), we obtain from the first of the Eqs. (56)

cos E ′ = BC + m A
√

D

A2 + B2
, sin E ′ = AC − m B

√
D

A2 + B2
(60)

with

D = A2 + B2 − C2, m = ±1 (61)

The sign of m should be chosen so as to satisfy the second of
Eqs. (56).

In degenerate cases, g can be replaced by trigonometric polyno-
mials of degree smaller than 8.

Example 2: Maximal and minimal distance with circular leader
and follower orbits.

In this case, g can be replaced by a trigonometric polynomial g1

of degree 1:

g1 = B F − AN = W11 sin 2E − W12 cos 2E

with

2W11 = (P P ′)2 + (P S′)2 − (P ′S)2 − (SS′)2

W12 = (P P ′)(P ′S) + (P S′)(SS′)

The roots of g1 can be straightforwardly calculated:

tan 2E = W12/W11, cot 2E = W11/W12

Choosing a reference frame such that P = P′ = (1, 0, 0),
Q = (0, 1, 0), Q′ = (0, cos i∗, k sin i∗), i∗ being the relative incli-
nation and k = ±1, we get W12 = 0. Extremal distances correspond
to position of both points on the mutual LON, so that

max ρ = a′ + a, min ρ = |a′ − a| (62)

Example 3: Coplanar leader and follower orbits with a circular
leader orbit (E ′).

Letting P = P′ = (1, 0, 0) and Q = Q′ = (0, 1, 0) we obtain

A = −
√

1 − e2 cos E, M = cos E − e

B = sin E, N = −
√

1 − e2 sin E

C = −αe sin E (1 − e cos E), K = 0.

and

g2(E) = sin2 E[1 − α2(1 − e cos E)2]

This case also leads to an elementary solution. The two roots are
lying on the line of apsides,

E1 = 0, E2 = π

If |α − 1| > αe, other real roots are absent. If

|α − 1| ≤ αe ⇔ a(1 − e) ≤ a′ ≤ a(1 + e) (63)

there are two additional roots

E3,4 = ± arccos[(α − 1)/αe]

Evidently, these values correspond to intersection points. Hence, if
the condition (63) is not fulfilled,

max ρ = a′ + a(1 + e)

min ρ = min[|a′ − a(1 − e)|, |a′ − a(1 + e)|] (64)

If condition (63) is satisfied, then

max ρ = a′ + a(1 + e), min ρ = 0 (65)

Consider now the resonant case (49) and (50). The functions W
and ρ [compare to Eq. (45)] are 2π periodic with respect to τ [com-
pare to Eq. (51)]. The problem is therefore reduced to determining
all roots τk ∈ [0, 2π) of the single-variable function g̃(τ ), given by

g̃ = ∂W (E, E ′)
∂ E

m

1 − e cos E
+ ∂W (E, E ′)

∂ E ′
m ′

1 − e′ cos E ′ (66)

Instead of g̃, we can use a third-order trigonometric polynomial in
E and E ′, denoted by g∗, given by

g∗ = m(1 − e′ cos E ′)
∂W (E, E ′)

∂ E
+ m ′(1 − e cos E)

∂W (E, E ′)
∂ E ′

(67)

Note that neither g̃(τ ) nor g∗(τ ) are trigonometric polynomials
in τ .

To calculate g̃(τ ) or g∗(τ ) for any τ , it is necessary to solve two
Kepler equations for determining E and E ′.

Example 4: Consider the orbits of Example 2 in the resonant case.
In this case,

W = (α + α′)/2 − cos M cos M ′ − cos i sin M sin M ′

g∗ = m(sin M cos M ′ − cos i cos M sin M ′)

+ m ′(cos M sin M ′ − cos i sin M cos M ′)

with M, M ′ linearly dependent on τ [Eq. (50)]. The functions W, g∗

are trigonometric polynomials in τ of degree m + m ′.
Example 5: Consider the orbits of Example 4 in case m = m ′ = 1.
In this case,

g∗ = (1 − cos i) sin(M + M ′) = (1 − cos i) sin(2τ + M ′
0 − M0)

If i = 0, then g∗ ≡ 0, and W = const, yielding

ρ ≡ 2a|sin[(M ′
0 − M0)/2]|

If i > 0, then g∗ has four roots on the unit circle, so that

min ρ2 = a2(1 + cos i)[1 − cos(M ′
0 − M0)]

max ρ2 = a2[3 − cos i − (1 + cos i) cos(M ′
0 − M0)]

which constitute a particularly simple expression for evaluating the
extremal intervehicle distances.
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IV. Conclusions
We have managed to obtain general expressions for modeling the

relative spacecraft geometry and have explicitly parameterized the
relative motion configuration space using classical orbital elements
as constants of the unperturbed Keplerian motion. Based on this
geometric insight, we presented analytic expressions for a few met-
rics that are important for generating safe and reliable spacecraft
formations. We conclude that these expressions differ in the com-
mensurable and incommensurable cases. In some instances, it is
possible to simplify the resulting expressions using a few relieving
assumptions regarding the orbital eccentricity.

We analyzed a few examples of practical interest to the design
of distributed space systems and formation flying. A few important
conclusions can be drawn from these examples. First, we conclude
that the relative motion geometry evolves on an invariant manifold,
which can be easily characterized using the relative orbital elements.
The motion along this manifold is quasi-periodic in the general
case and periodic in the commensurable case. Both types of motion
evolve on the relative motion manifold.

Second, we conclude that if the eccentricities of the leader and
follower orbits are first-order small, then the mean-square distance
between the orbits is a geometric mean of the leader and follower
semimajor axes.

Third, it can be concluded that the extremal distances in the com-
mensurable case are simple functions of the mean anomaly at epoch
of the follower and leader spacecraft.
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